
Efficient Structural Clustering
on Probabilistic Graphs

Yu-Xuan Qiu , Rong-Hua Li , Jianxin Li , Shaojie Qiao , GuorenWang , Jeffrey Xu Yu , and Rui Mao

Abstract—Structural clustering is a fundamental graph mining operator which is not only able to find densely-connected clusters, but it

can also identify hub vertices and outliers in the graph. Previous structural clustering algorithms are tailored to deterministic graphs.

Many real-world graphs, however, are not deterministic, but are probabilistic in nature because the existence of the edge is often

inferred using a variety of statistical approaches. In this paper, we formulate the problem of structural clustering on probabilistic graphs,

with the aim of finding reliable clusters in a given probabilistic graph. Unlike the traditional structural clustering problem, our problem

relies mainly on a novel concept called reliable structural similarity which measures the probability of the similarity between two vertices

in the probabilistic graph. We develop a dynamic programming algorithm with several powerful pruning strategies to efficiently compute

the reliable structural similarities. With the reliable structural similarities, we adapt an existing solution framework to calculate the

structural clustering on probabilistic graphs. Comprehensive experiments on five real-life datasets demonstrate the effectiveness and

efficiency of the proposed approaches.

Index Terms—Probabilistic graph, structural clustering, reliable structural similarity

Ç

1 INTRODUCTION

STRUCTURAL clustering has been recognized as an impor-
tant graph mining operator. Different from traditional

clustering, it not only discovers densely-connected clusters,
but also is able to distinguish the different roles of the verti-
ces in the graph by identifying the clustered vertices, hub
vertices, and outliers [1], [2], [3], [4]. In the structural cluster-
ing framework (SCAN), the vertex included in any cluster is
referred to as a clustered vertex; the vertex not included in
any cluster is called a hub vertex if it connects no less than
two clusters, and called an outlier otherwise [1], [4].

The previous structural clustering algorithm SCAN [1]
and its improved implementations [3], [4] are tailored to
deterministic networks. Many real-life networks, however,
are probabilistic in nature, in which each edge is associated
with a probability, representing the likelihood of the exis-
tence of the edge [5]. The probabilistic graphs have been
widely used in many applications to model or express the

inferred relationship of the vertices in a network [5]. Exam-
ples of such networks include protein-protein interaction
networks with experimentally inferred links [6], sensor net-
works with uncertain connectivity links [7], social networks
augmented with inferred friendship [8] or inferred influ-
ence [9]. Many fundamental data management and mining
problems have recently been studied in the context of prob-
abilistic graphs. Notable examples include the most reliable
subgraph problem [10], the k-nearest neighbors search
problem [11], the distance-constraint reachability computa-
tion problem [12], the frequent subgraph pattern mining
problem [13], and the top-k maximal cliques problem [14].

The clustering problem on probabilistic graphs, with the
aim of finding densely-connected subgraphs, has a number
of applications in practice, two of which are listed below.

Application 1. Probabilistic graph clustering on uncertain
traffic networks can help governments to identify the traffic
hotspots in the city based on the local residents’ transfer stops
in their daily travel behaviors. Given two stops, residentsmay
choose different routes to travel with different probabilities.
Thus, probabilistic graph clustering can be used to discover
the groups of stops that are highly reliable with regard to the
residents’ travel preferences. The areas bounded by such dis-
covered stopswould be the heavy traffic zones so that the gov-
ernments may need to pay more attention when they plan
some public events in such particular areas or zones.

Application 2. Probabilistic graph clustering can also be
applied to study the cluster structures in protein-protein
interaction (PPI) networks. In PPI networks, nodes denote
proteins, and edges represent interactions among them.
Each edge is associated with an uncertainty value because
the interactions are derived through noisy and error-prone
lab experiments. The edge of a protein pair indicates
the reliability of the interaction between the two proteins
[6]. Thus, finding the reliable clusters in PPI networks can
discover the highly correlated proteins with probabilities at

� Y.-X. Qiu and R.-H. Li are with the Beijing Institute of Technology,
Beijing 100081, China, and the National Engineering Laboratory for Big
Data System Computing Technology.
E-mail: qiuyuxuan1@email.szu.edu.cn, lironghuascut@gmail.com.

� J. Li is with the University of Western Australia, Perth 6009, Australia.
E-mail: jianxin.li@uwa.edu.au.

� S. Qiao is with the Chengdu University of Information Technology,
Chengdu 610041, China. E-mail: sjqiao@cuit.edu.cn.

� G. Wang is with the Beijing Institute of Technology, Beijing 100081,
China. E-mail: wanggrbit@126.com.

� J. X. Yu is with the Chinese University of Hong Kong, Hong Kong.
E-mail: yu@se.cuhk.edu.hk.

� R. Mao is with Shenzhen University, Shenzhen 518060, China.
E-mail: mao@szu.edu.cn.

Manuscript received 23 Jan. 2018; revised 18 July 2018; accepted 22 Sept.
2018. Date of publication 28 Sept. 2018; date of current version 10 Sept. 2019.
(Corresponding author: Rong-Hua Li.)
Recommended for acceptance by E. Terzi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2018.2872553

1954 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 10, OCTOBER 2019

1041-4347� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5275-7983
https://orcid.org/0000-0002-5275-7983
https://orcid.org/0000-0002-5275-7983
https://orcid.org/0000-0002-5275-7983
https://orcid.org/0000-0002-5275-7983
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0002-9059-330X
https://orcid.org/0000-0002-9059-330X
https://orcid.org/0000-0002-9059-330X
https://orcid.org/0000-0002-9059-330X
https://orcid.org/0000-0002-9059-330X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-4703-780X
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
https://orcid.org/0000-0002-3645-5520
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

different levels, which can help to investigate the effect of
medicines to the correlated proteins.

In the literature, researches on probabilistic graph clus-
tering have also been studied. Kollios et al. [15] proposed a
clustering algorithm by minimizing the expected edit dis-
tance between the probabilistic graph G and the cluster sub-
graph C. Each cluster subgraph C defined in this work
requires to be a clique, and therefore their algorithm inevita-
bly produces many small clusters. Liu et al. formulated a
reliable clustering problem on probabilistic graphs and pro-
posed a coded k-means algorithm to solve their problem[16].
The main deficiencies of their algorithm are twofold. First, it
only works well for the applications that have a small num-
ber of ground-truth clusters [15]. Second, their algorithm
cannot be scalable to large probabilistic graphs due to its
quadratic space complexity.

All the existing clustering approaches focus mainly on
partitioning the vertices into different clusterswithout recog-
nizing their different roles in the probabilistic graph. It
would make these methods limited in some real-life applica-
tions, e.g., understanding social users’ behaviors and
improving the advertisement placement in the influence net-
work [9]. We could make significant improvements in these
applications by distinguishing the clustered vertices, hubs,
and outliers using a similar idea of structural clustering [1].
For example, the clustered vertices may be easily influenced
by their neighborhood users, hub vertices might be influ-
enced by their connected clusters, and outlier vertices may
only be affected by their close neighbors. Motivated by this,
in this paper we study the problem of structural clustering on
probabilistic graphs, with the aim of identifying reliable clus-
ters, hubs, and outliers in a given probabilistic graph.

To solve our problem, a straightforwardmethod is to con-
vert the probabilistic graph into a weighted deterministic
graph, in which the weight of each edge represents the prob-
ability of it. Then, we invoke the traditional SCAN algorithm
to derive the structural clustering results [1]. However, such
a straightforward algorithmmay fail to find reliable clusters.
This is because the weighted deterministic graph may fail to
reflect the connectivity of the probabilistic graphs correctly.
We use the following example to illustrate this point.

Example 1. Consider a probabilistic graph G in Fig. 1a.
When doing structural clustering on G without consider-
ing the probabilities on the edges, wemay obtain two clus-
ters, i.e., {v1; v2; v3; v4} and {v6; v7; v8; v9}. This is equivalent
to the situation of clustering the possible graph of G shown
in Fig. 1d. However, there are many possible graphs of G
like the graph shown in Fig. 1b or Fig. 1c, in which v9 may
not be in the same cluster with v6; v7 and v8, because some
of the edges between themmay not be existed.

Contributions. In this paper, we formalize and provide
efficient solutions to perform structural clustering on proba-
bilistic graphs. In particular, we make the following
contributions.

New concepts and problems.We first introduce a new con-
cept called reliable structural similarity to measure the simi-
larity between two vertices in the probabilistic graph. The
proposed reliable structural similarity is able to capture the
similarity between two vertices over all the possible instances
of the probabilistic graph. Based on the reliable structural
similarity, we formulate the structural clustering problem on
probabilistic graphs, which is able to detect reliable clusters,
hubs, and outliers in a given probabilistic graph.

New algorithms. To solve our problem, we first develop a
polynomial-time dynamic programming (DP) algorithm to
compute the reliable structural similarity exactly. Armed
with the reliable structural similarities, we adapt the state-of-
the-art SCAN algorithm to calculate the structural clustering
results. We also develop several effective pruning techniques
to further improve the efficiency of our algorithm.

Experimental evaluation. We conduct extensive experi-
ments using five real-world datasets to evaluate the pro-
posed algorithms. The results show that our algorithm
significantly outperforms the baseline algorithms in terms
of the clustering quality. The results also demonstrate the
efficiency and scalability of the proposed algorithm. For
example, our algorithm can obtain the structural clustering
results on a million-sized probabilistic graph with 1,843,615
vertices and 8,350,259 edges in around one hour.

Organization. The rest of the paper is organized as follows.
In Section 2, we introduce the problem formulation and some
necessary background knowledge. In Section 3, we describe
the clustering framework for the probabilistic graphs and a
dynamic programming based algorithm to compute reliable
structural similarity. We devise several optimization techni-
ques to speed up our algorithms in Section 4. Section 5
presents the experimental results, and Section 6 reviews the
relatedwork. Finally, we conclude thiswork in Section 7.

2 PRELIMINARIES

In this section, we first introduce some important notations
and definitions, and then we formulate the structural clus-
tering problem on probabilistic graphs.

2.1 Basic Notations and Definitions
Consider an unweighted and undirected probabilistic graph
G ¼ ðV;E; P Þ, where V is the set of vertices, E is the set of
edges, and P denotes the set of probabilities. In G, each edge
e 2 E is associated with a probability Pe 2 P . A probabilistic
graph G can be instantiated into a deterministic graph by
sampling each edge e with probability Pe. Following the
standard uncertain graph model [10], [11], [17], [18], we
assume that the existence of an edge is independent of that
of any other edge. The well-known possible world semantics
can be applied to analyze the probabilistic graphs [11]. Spe-
cifically, each possible world is a deterministic graph which
contains all the vertices in V , but some or all of the edges in
E, in terms of the probabilities in P .

Let G ¼ ðV;EGÞ be a possible world which is realized by
sampling each edge in G according to the probability Pe.
Clearly, we have EG � E. The probability Pr½GjG� of sam-
pling this possible world is calculated as follows.

Fig. 1. Running example.

QIU ETAL.: EFFICIENT STRUCTURALCLUSTERING ON PROBABILISTIC GRAPHS 1955

Pr½GjG� ¼
Y
e2EG

Pe

Y
e2EnEG

ð1� PeÞ: (1)

Example 2. Consider the probabilistic graph G shown in
Fig. 1a. Figs. 1b, 1c, and 1d illustrate three possible worlds
of G, denoted by G1, G2, and G3 respectively. Based on
Eq. (1), we can easily derive that the probability of G1, G2,
and G3 are 0.000162, 0.000162, and 0.000002 respectively.

We make use of G v G to indicate that G is a possible
world of G. Clearly, there are a total of 2jEj possible worlds
in graph G because each edge provides a binary sampling
decision. For convenience, we use a notation G to denote a
probabilistic graph, and utilize a notation G to denote a pos-
sible world or a deterministic graph. Below, we introduce
some useful definitions of structural clustering for deter-
ministic graph, which is originally proposed by Xu et al. [1].

Definition 1 (Structural Neighborhood [1]). Given a deter-
ministic graph G ¼ ðV;EGÞ, the structural neighborhood of a
vertex u 2 V , denoted by N½u�, is the closed neighborhood of u,
i.e., N½u� ¼ fv 2 V jðu; vÞ 2 EGg [fug.

It should be noted that the structural neighborhood of a
vertex includes itself.

Example 3. Consider the graph in Fig. 1b, the structural
neighborhood of vertex v4 is N½v4� ¼ fv1; v2; v3; v4; v5g.
However, when considering Fig. 1c, we have N½v4� ¼ fv1;
v3; v4; v5g.
Based on the definition of structural neighborhood, we

give the definition of structural similarity.

Definition 2 (Structural Similarity). Given a deterministic
graph G ¼ ðV;EGÞ, the structural similarity between vertices
u and v, denoted by sðu; vÞ, is defined as the number of common
vertices in N½u� and N½v�, normalized by jN ½u� [N ½v�j

sðu; vÞ ¼ jN½u� \N½v�j
jN½u� [N½v�j : (2)

Note that the original definition of structural similarity is
based on a cosine-type similarity [1], here we adopt the Jac-
card similarity, because it is more intuitive to measure the
similarity between two vertices set. This Jaccard similarity
was shown to be effective for structural clustering [2]. For
brevity of the description, we also use sðeÞ to denote the
structural similarity between u and v in the edge e ¼ ðu; vÞ.
Example 4. Consider the graph in Fig. 1d. Clearly, N½v1� ¼
fv0; v1; v2; v3; v4g, N½v4� ¼ fv1; v2; v3; v4; v5g, and N½v5� ¼
fv4; v5; v6g. Thus, we have jN ½v1� \N ½v4�j ¼ jfv1; v2;
v3; v4gj ¼ 4, jN½v1� [N½v4�j ¼ fv0; v1; v2; v3; v4; v5g¼ 6, jN½v4� \
N ½v5�j ¼ jfv4; v5gj ¼ 2, and jN ½v4� [N½v5�j ¼ fv1; v2; v3; v4;
v5; v6g ¼ 6, and thereby we obtain that sðv1; v4Þ ¼
jN½v1�\N½v4�j
jN½v1�[N½v4�j ¼

4
6 ¼ 2

3 , and sðv4; v5Þ ¼ jN½v4�\N½v5�jjN½v4�[N½v5�j ¼
2
6 ¼ 1

3.

Definition 3 (�-Structural Similarity [1]). Given any two
neighbor vertices u, v, and a similarity threshold �, u is struc-
tural similar to v in a deterministic graph G if sðu; vÞ � � and
e ¼ ðu; vÞ 2 EG.

Example 5. Continuing the Example 4, if � ¼ 0:5, v1 is struc-
tural similar to v4, as sðv1; v4Þ ¼ 2=3 � �. However, v4 is
not structural similar to v5, because sðv4; v5Þ ¼ 1=3 < �.

2.2 Problem Formulation
The above definitions in the structural clustering algorithm
(SCAN) are tailored to deterministic graphs. Below, we
extend these definitions to probabilistic graphs.

Definition 4 (Probability of Structural Similarity). Given
a similarity threshold 0 < � � 1, the probability of struc-
tural similarity that sðeÞ � � is defined as the sum of the
probabilities of all the possible worlds G v G, such that the
structural similarity of e ¼ ðu; vÞ is no less than � in each
possible world G

Pr½e; �� ¼
X
GvG

Pr½GjG� � IðsðeÞ � �Þ; (3)

where IðsðeÞ � �Þ is an indicator function which equals 1 if
sðeÞ � �, and 0 otherwise. If e =2 EG, IðsðeÞ � �Þ ¼ 0.

Example 6. Consider the edge e ¼ ðv1; v4Þ in the probabilis-
tic graph G in Fig. 1a. Assume that � ¼ 0:5. In the possible
world G1, sðeÞ ¼ 2

3 � 0:5, hence IðsðeÞ � 0:5Þ ¼ 1. Simi-
larly, in G2, we have IðsðeÞ � 0:5Þ ¼ 0, and IðsðeÞ �
0:5Þ ¼ 1 in G3. By accumulating the probabilities of
IðsðeÞ � �Þ ¼ 1 over all possible worlds of G, we can
derive that Pr½e; 0:5� ¼ 0:3125.

On the basis of Definition 4, we define the reliable struc-
tural similarity between two vertices u and v in an edge
e ¼ ðu; vÞ as follows.

Definition 5 (Reliable Structural Similarity). Given an
edge e ¼ ðu; vÞ and a threshold h, u is called reliable structural
similar to v if Pr½e; �� � h.

Clearly, by Definition 5, if u is reliable structural similar
to v, u and v are structural similar with high probability.
Intuitively, this definition captures the similarity between
two vertices in the probabilistic graph. Moreover, as shown
in Section 3, the striking feature of our reliable structural
similarity based on Definitions 4 and 5 is that it can be com-
puted in polynomial time, albeit the number of possible
worlds in the probabilistic graph is exponentially large.

For a vertex u, the (�, h)-reliable neighborhood of u con-
tains all its neighbors that are reliable structural similar to u.

Definition 6 ((�, h)-Reliable Neighborhood). Given a simi-
larity threshold 0 < � � 1 and a probability threshold 0 <
h � 1, the ð�; hÞ-reliable neighborhood of u is defined as the sub-
set of vertices in N ½u� such that Pr½e ¼ ðu; vÞ; �� � h, i.e.,
Nð�;hÞ½u� ¼ fv 2 N ½u�jPr½e ¼ ðu; vÞ; �� � hg.

Example 7. Consider v4 in the probabilistic graph G in
Fig. 1a. Suppose that � ¼ 0:5 and h ¼ 0:2. Then, one can
easily derive that Nð0:5;0:2Þ½v4� ¼ fv1; v2; v3; v4; v5g by
definition.

The (�, h)-reliable neighborhood is also called reliable
similar neighborhood. Intuitively, the more reliable similar
neighbors a vertex has, the more important role it plays in
the clustering procedure. A vertex is termed as a reliable
core vertex if it has a sufficient number of reliable similar
neighbors.

Definition 7 ((�, h, m)-Reliable Core Vertex). Given a simi-
larity threshold 0 < � � 1, a probability threshold 0 < h � 1,
and an integer m � 2, a vertex u is a (�, h, m)-reliable core
vertex if jNð�;hÞ½u�j � m.

1956 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 10, OCTOBER 2019

Based on Definition 7, we give a definition of reliable
structure-reachable as follows.

Definition 8 (Reliable Structure-reachable). Given param-
eters 0 < � � 1, 0 < h � 1, and m � 2, vertex v is reliable
structure-reachable from vertex u if there is a sequence of
vertices v1; v2; . . . ; vl 2 V (l � 2) such that:

� v1 ¼ u and vl ¼ v;
� v1; v2; . . . ; vl�1 are reliable core vertices;
� viþ1 2 N�;hðviÞ for each 1 � i � l� 1.

In terms of Definition 8, if v is reliable structure-reachable
from u, there is a path from u to v such that (i) u and all the
intermediary vertices in the path are reliable core vertices,
and (ii) the two vertices of each edge in the path are reliable
structural similar. We use the following example to illus-
trate Definition 8.

Example 8. Reconsider the probabilistic graph in Fig. 1a. Let
h ¼ 0:2, � ¼ 0:5, and m ¼ 4. We can figure out that
v0; v1; v3; v4 and v5 are reliable structure-reachable from v2.
v1; v3; v4 are reliable core vertices, and each of them is
in Nð0:5;0:2Þ½v2�. v0 and v5 are non-core vertices, v0 2
Nð0:5;0:2Þ½v1�, and v5 2 Nð0:5;0:2Þ½v4�. Note that v6 is not reliable
structure-reachable from v2, albeit v6 2 Nð0:5;0:2Þ½v5�. This is
because v5 is a non-core vertex. Fig. 2 shows all the vertices
that are reliable structure-reachable from v2 (dark vertices).

Based on the above definitions, we formulate the struc-
tural clustering problem in probabilistic graphs as follows.

The Probabilistic Graph Clustering Problem. Given a proba-
bilistic graph G ¼ ðV;E; P Þ and parameters 0 < � � 1, 0 <
h � 1, and m � 2, the problem of probabilistic graph cluster-
ing is to compute the set C of reliable clusters in G. Each reli-
able cluster C 2 C should have at least two vertices (i.e.,
jCj � 2) and satisfy:

� Maximality: for each reliable core vertex u 2 C, all
vertices that are reliable structure-reachable from u
must belong to C;

� Connectivity: for any two vertices v1; v2 2 C, there
exists a vertex u 2 C such that both v1 and v2 are reli-
able structure-reachable from u.

Example 9. Consider the probabilistic graph in Fig 1a.
Given that h ¼ 0:2; � ¼ 0:5;m ¼ 4, we can obtain two clus-
ters which are C1 ¼ fv0; v1; v2; v3; v4; v5g, C2 ¼ fv5; v6; v7;
v8g respectively. However, when h ¼ 0:2; � ¼ 0:6;m ¼ 3,
we are able to derive two different clusters which are
C1 ¼ fv0; v1; v2; v3; v4g and C2 ¼ fv6; v7; v8g respectively.
Similar to the structural clustering results on determin-

istic graphs [4], the clusters obtained in our problem can
also overlap. In Example 9, v5 is assigned to both cluster C1

and C2. We can easily derive that each reliable core vertex
can only be in one cluster. In addition, the proposed

clustering procedure can also generate vertices that are not
contained in any reliable clusters. These vertices are classi-
fied as hub vertices and outliers.

Definition 9 (Hub and Outlier). Given the set C of reliable
clusters in a probabilistic graph G, a vertex u that is not in any
reliable cluster in C is a hub vertex if it connects two or more
reliable clusters, and it is an outlier vertex otherwise.

Example 10. Consider the probabilistic graph G in Fig. 1a.
Let h ¼ 0:2; � ¼ 0:6;m ¼ 3, we are able to get two clusters
which are C1 ¼ fv0; v1; v2; v3; v4g and C2 ¼ fv6; v7; v8g, as
illustrated in Fig. 3. Clearly, in this example, v5 is a hub
vertex, as it connects two clusters C1 and C2, whereas v9
is an outlier, because it only links to a cluster C2.

Given the set C of clusters in G, it is straightforward to
obtain the set of hubs and the set of outliers in the probabilis-
tic graph G using OðnþmÞ time by definition. In the follow-
ing sections, we focus mainly on computing the set of
clustersC in G.

2.3 Challenges
Compared to the traditional structural clustering pro-
blem for deterministic graphs, our problem is much more
complicated. This is because the structural similarity
defined in our problem is associated with a probability (see
Definition 4). Computing the probability of structural simi-
larity is a challenging task, as it relies on a sum of probabilities
over all possible worlds (see Definition 4). A straightfor-
ward method to compute this probability is to enumerate
all possible worlds, and then determines whether the struc-
tural similarity is no less than the threshold � in each possi-
ble world. This approach, however, is intractable for large
probabilistic graphs, as the number of possible worlds is
exponential. In the following section, we will develop an
efficient dynamic programming algorithm to tackle this
challenge, on the basis of an in-depth analysis of our prob-
lem. Note that after computing probability of structural sim-
ilarity for each edge, we can easily adapt the existing SCAN
algorithms to compute the reliable clusters, and identify
hubs and outliers as well.

3 THE PROPOSED ALGORITHM

In this section, we first introduce a clustering framework to
solve our structural clustering problem on probabilistic
graph by adapting the state-of-the-art PSCAN algorithm for
structural clustering on deterministic graphs. Then, we
develop a novel dynamic programming algorithm to com-
pute the reliable structural similarities which is the most
time-consuming step in our problem.

3.1 The Clustering Framework
The structural clustering framework for probabilistic graphs
can be obtained by slightly modifying the state-of-the-art

Fig. 2. Illustration of all the vertices that are reliable structure-reachable
from v2 (h ¼ 0:2; � ¼ 0:5;m ¼ 4).

Fig. 3. Illustration of hubs and outliers (C1 ¼ fv0; v1; v2; v3; v4g and
C2 ¼ fv6; v7; v8g are two clusters provided that h ¼ 0:2; � ¼ 0:6;m ¼ 3).

QIU ETAL.: EFFICIENT STRUCTURALCLUSTERING ON PROBABILISTIC GRAPHS 1957

PSCAN framework [4] for deterministic graphs. Note that
PSCAN follows the same definition of structural clustering
in deterministic graphs, which is originally proposed by Xu
et al. [1]. The PSCAN framework is an improved solution
with several optimizations to reduce the computational cost
of the clustering procedure.

Algorithm 1. The USCAN Clustering Framework

Input: G ¼ ðV;E; P Þ, and parameters �, h, m
Output: The set C of clusters in G

1 Initialize Gc ¼ ðV; ;Þ such that each vertex in V
is a connected component;

2 for each vertex u 2 V do
3 cu 0; /* Initialize u as a non-core vertex */
4 for each vertex u 2 V do
5 if IsReliableCore(u) then
6 cu 1;
7 for each v 2 Nð�;hÞ½u� do
8 if IsReliableCore(v) then Add ðu; vÞ into Gc

9 Cc the set of connected components in Gc

including reliable core vertices;
10 C fCc [u2Cc Nð�;hÞ½u�jCc 2 Ccg;
11 return C;
12 Procedure IsReliableCore(u)
13 lu 0;
14 for each vertex v 2 NðuÞ do
15 Compute Pr½e; ��;
16 if Pr½e; �� � h then
17 lu lu þ 1;
18 if lu � m then
19 Return true;
20 else
21 Return false;

For completeness, we outline the modified PSCAN
framework for probabilistic graphs in Algorithm 1 which is
referred to as USCAN. Similar to PSCAN, the USCAN
framework also consists of two stages. In the first stage, the
algorithm clusters reliable core vertices, and then in the sec-
ond stage, it clusters non-core vertices. Specifically, the algo-
rithm first initializes every vertex as a cluster (line 1), and
every vertex as a non-core vertex (lines 2-3). Then, for each
vertex u 2 V , the algorithm determines whether it is a reli-
able core vertex (lines 4-6). If u is a reliable core vertex, the
algorithm visits each reliable neighbor of u. If such a reliable
neighbor is also a reliable core vertex, the algorithm merges
the clusters of u and v (lines 7-8). When this procedure ter-
minates, the algorithm can obtain a set of connected compo-
nents that contain the reliable core vertices (line 9). Finally,
for each non-core vertex v, the algorithm puts it into the
cluster containing a reliable core vertex u such that v is a
reliable neighbor of u (line 10).

Note that the main difference between Algorithm 1 and
the PSCAN algorithm proposed by Chang et al. is that our
algorithm relies on computing the probability of structural
similarity for each edge e 2 E, while PSCAN is to compute
traditional structural similarity [4]. We can also apply the
pruning techniques developed in this work to speed up our
clustering framework.

Correctness Analysis. The correctness of Algorithm 1 is
guaranteed by the following lemmas which can be
easily proven using similar arguments as shown by
Chang et al. [4].

Lemma 1. For any reliable cluster C 2 C in a probabilistic graph
G, it comprises the set of vertices that are reliable structure-
reachable form u, where u is an arbitrary reliable core vertex inC.

Lemma 2. For any two reliable core vertices u and v in G, they
must be in the same cluster in G if and only if they are in the
same connected component in Gc.

Lemma 3. Let Cc be the set of clusters of reliable core vertices in
G, then the set of clusters of all vertices in G is fCc[u2Cc

Nð�;hÞ½u�jCc 2 Ccg.
Lemmas 1 and 2 indicate that all the connected reliable

core vertices are contained in the same cluster. With
Lemma 3, we are able to assign the neighbors of a reliable
core vertex to their corresponding clusters. All the three
lemmas make the maximality and connectivity to be satis-
fied in the probabilistic clustering problem.

3.2 Reliable Structural Similarity Computation
Recall that in Algorithm 1, we need to compute the
ð�; hÞ-reliable neighborhood (i.e., Nð�;hÞ½u�), as well as
determine whether a vertex is a reliable core. Both of these
two operators rely mainly on calculating the probability of
structural similarity (i.e., Pr½e; ��). As discussed in Section 2,
computing Pr½e; �� (the probability of sðeÞ � �) is a very
challenging task, because the number of possible instances
of a probabilistic graph is exponential large. The straightfor-
ward algorithm to compute Pr½e; �� based on Definition 4
has to explore all possible worlds, which is clearly intracta-
ble for large probabilistic graphs. Below, we devise a new
dynamic programming approach to compute Pr½e; �� in
polynomial time based on a crucial observation of our
definition.

DP Algorithm for Pr½e; �� Computation. Let �G be the deter-
ministic counterpart of the probabilistic graph G (ignoring
the probabilities of G). Denote by �N ½u� the structural neigh-
borhood of u in �G. Then, we have the following observation.

Observation 1. For each e ¼ ðu; vÞ 2 G, the number of possi-
ble values of the structural similarity between u and v over
all the possible worlds can be bounded byOðkjoin 	 kunionÞ,
where kjoin ¼ j �N½u� \ �N ½v�j and kunion ¼ j �N ½u� [�N ½v�j.

Proof. Recall that in any possible world G v G, the struc-
tural similarity sðu; vÞ is equal to jN ½u� \N½v�j=jN ½u� [
N½v�j, where N½u� is the structural neighborhood of u in
G. Clearly, jN½u� \N ½v�jmust be an element in the integer
set f0; 1; . . . ; kjoing, and jN½u� [N½v�j must be a value in
the integer set f0; 1; . . . ; kuniong. Therefore, the number of
possible values of the structural similarity between u and
v is no larger than ðkjoin þ 1Þ 	 ðkunion þ 1Þ. tu

Example 11. Consider an edge ðv4; v5Þ in the probabilistic
graph in Fig. 1a. Since kjoin ¼ jN ½v4� \N½v5�j ¼ 2 and
kunion ¼ jN½v4� [N ½v5�j ¼ 6, sðv4; v5Þ must be a value in
the set S ¼ f0; 1; 1=2; 1=3; 1=4; 1=5; 1=6; 2=3; 2=5g, where
jSj ¼ 9 < ðkjoin þ 1Þ 	 ðkunion þ 1Þ ¼ 21.

By Observation 1, we can see that the number of possible
values of the structural similarity is bounded, albeit there
are 2jEj possible worlds in G. This result suggests that for an
edge ðu; vÞ, we can group all possible worlds into a class if
the sðu; vÞ values on these possible worlds are equal to the
same value. Following this way, we can obtain at most
Oðkjoin 	 kunionÞ classes, where each possible structural

1958 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 10, OCTOBER 2019

similarity value represents a class. By enumerating all these
classes (instead of enumerating all possible worlds), we are
able to obtain a polynomial-time algorithm to compute the
probability of structural similarity. Below, we show how to
establish a recursive relationship between different classes.

Let e ¼ ðu; vÞ be a probabilistic edge in G,NðuÞ =N ½u�n fug
and NðvÞ = N½v� n fvg, denoting the number of possible
neighbors of u and v, respectively. Assume, without loss of
generality, that the vertices in NðuÞ [NðvÞ are ordered by
their vertices IDs. Then, we process one vertex in NðuÞ [
NðvÞ at a time in the probabilistic graph, following the vertex
order. Suppose that we have already processed h vertices by
the hth time and w is the vertex to be processed at the
ðhþ 1Þth time. Consider the case when sðu; vÞ ¼ m0

n0 , where u
and v havem0 commonneighbors, and they have n0 neighbors
in total. Then, the probability of sðu; vÞ ¼ m0

n0 at the ðhþ 1Þth
time, denoted by Pr½sðeÞ ¼hþ1 m0

n0 �, can be calculated by access-
ing the computational results at the previous h times.

Let e1 ¼ ðu;wÞ and e2 ¼ ðv; wÞ be two potential edges.

Then, sðeÞ ¼hþ1 m0
n0 holds if and only if one of the following

three cases happens:

(i): Both e1 and e2 exist in the possible worlds where e
occurs. In this case, the probability is equal to

Pe1Pe2Pr½sðeÞ ¼
h m0�1

n0�1 �, which requires to aggregate

the probabilities of the cases that have m0 � 1 com-
mon neighbors among the total n0 � 1 neighbors
processed at the previous h times.

(ii): Only one of e1 and e2 exists in the possible worlds
where e occurs. The probability in this case is
ðð1� Pe1ÞPe2 þ Pe1ð1� Pe2ÞÞPr½sðeÞ ¼

h m0
n0�1�, which

requires to aggregate the probabilities of the cases
that have m0 common neighbors among the total
n0 � 1 neighbors processed at the previous h times.

(iii): Neither e1 nor e2 exists in the possible worlds where e
occurs. The probability is ð1� Pe1Þð1� Pe2ÞPr½sðeÞ ¼

h

m0
n0 �, which needs to aggregate the probabilities of the
cases that havem0 common neighbors among the total
n0 neighbors processed at the previous h times.

Based on the above three cases, we can derive that the
probability of structural similarity of e at the ðhþ 1Þth time
can be computed in a recursive way as follows.

Pr sðeÞ ¼hþ1 m
0

n0

� �
¼ Pe1Pe2Pr sðeÞ ¼h m0 � 1

n0 � 1

� �

þ ðð1� Pe1ÞPe2 þ Pe1ð1� Pe2ÞÞPr sðeÞ ¼h m0

n0 � 1

� �

þ ð1� Pe1Þð1� Pe2ÞPr sðeÞ ¼h m0

n0

� �
:

(4)

By Eq. (4), we can devise a DP algorithm to compute

Pr½sðeÞ ¼hþ1 m0
n0 � for all h, m0 and n0. Denote by W ¼ NðuÞ[

NðvÞ ¼ fw1; w2; . . . ; wkunion�2g. At the hth time, the algorithm
has processed h vertices, i.e., Wh ¼ fw1; . . . ; whg �W ,
where 1 � h � kunion. Let Xðh;m0; n0Þ be a state, represent-
ing the probability of sðeÞ ¼ m0

n0 after processing the vertex
wh at the h-time. Then, based on Eq. (4), the state-transfor-
mation equation of the DP algorithm is given as follows.

Xðh;m0; n0Þ ¼ pðwh;uÞpðwh;vÞXðh� 1;m0 � 1; n0 � 1Þ
þ ðð1� pðwh;uÞÞpðwh;vÞ þ pðwh;uÞð1� pðwh;vÞÞÞXðh� 1;m0; n0 � 1Þ
þ ðð1� pðwh;uÞÞð1� pðwh;vÞÞÞXðh� 1;m0; n0Þ:

(5)

Initially, the basic state of our DP algorithm can be set as
Xð0; 2; 2Þ ¼ pe for an edge e. This is because m0 ¼ 2 and
n0 ¼ 2when no vertex has been processed, and the probabil-
ity of this case is equal to the probability pe.

Algorithm 2 outlines the detailed implementation of our
DP algorithm. The algorithm first initializes Xðh;m0; n0Þ ¼ 0
and Prðe; �Þ ¼ 0 (lines 1-2). Then, the algorithm sets Xð0;
2; 2Þ ¼ 1 (line 3). To ensure the correctness, the algorithm
will multiply pe when it terminates (line 11). Subsequently,
in lines 4-7, the algorithm continuously processes vertices
and enumerates all possible situations of the numerators
and denominators of the structural similarity based on the
Eq. (5). In lines 8-10, the algorithm computes the sum of all
Xðh;m0; n0Þ for m0

n0 � �, resulting in Prðe; �Þ. Finally, the algo-
rithm returns pe 	 Prðe; �Þ as the result. The correctness of
Algorithm 2 can be guaranteed by Eqs. (4) and (5). The fol-
lowing example illustrates how Algorithm 2 works.

Example 12. Considering the edge e ¼ ðv8; v9Þ in Fig. 4
which is a subgraph of Fig. 1a. Assume that � ¼ 0:6, and
we aim to calculate Pr½e; 0:6�. First, the algorithm initial-
izes Xð0; 2; 2Þ ¼ 1. Then, the algorithm processes the ver-
tex v6, and enumerates all potential m0 and n0 based on
Eq. (5). Specifically, in this iteration, the algorithm com-
putes Xð1; 2; 2Þ ¼ Xð0; 2; 2Þ 	 ð1� 0:1Þ 	 ð1� 0:8Þ ¼ 0:18,
Xð1; 2; 3Þ ¼ Xð0; 2; 2Þ 	 ðð1� 0:1Þ 	 0:8þ 0:1	 ð1� 0:8ÞÞ ¼
0:74, Xð1; 3; 3Þ ¼ 0:08. Subsequently, the algorithm pro-
cesses the vertex v7, and calculates Xð2; 2; 2Þ ¼ Xð1; 2; 2Þ 	
ð1� 0:1Þ 	 ð1� 0:8Þ ¼ 0:0324, Xð2; 2; 3Þ ¼ 0:2664, Xð2; 3;
3Þ ¼ 0:0288, Xð2; 2; 4Þ ¼ 0:5476, Xð2; 3; 4Þ ¼ 0:1184, Xð2;
4; 4Þ ¼ 0:0064. After obtaining all the probabilities for
each possible m0 and n0, the algorithms takes the sum
over all probabilities of m0

n0 � 0:6, and then multiplies Pe to
derive that Pr½e; 0:6� ¼ ð0:0324þ 0:2664þ 0:0288þ 0:1184þ
0:0064Þ 	 0:1 ¼ 0:04524.

Complexity Analysis. First, it is easy to show that the time
complexity of Algorithm 2 to compute Prðe; �Þ for an edge

e ¼ ðu; vÞ is Oðk2unionkjoinÞ, where kjoin ¼ j �N ½u� \ �N ½v�j and
kunion ¼ j �N½u� [�N ½v�j. Note that kunion can be bounded by
2	 dmax, where dmax is the maximum degree in �G (the deter-
ministic counterpart of the probabilistic graph G), and kjoin is
bounded by minfdu; dvg. Thus, the time cost of Algorithm 2
to process an edge ðu; vÞ is bounded by Oðd2max	
minfdu; dvgÞ. As a consequence, the total cost of Algorithm 2
to compute Prðe; �Þ for all e 2 E can be bounded by
Oðd2max 	

P
ðu;vÞ2E minfdu; dvgÞ ¼ Oðd2max 	 a	mÞ, where a

denotes the arboricity of the graph G and m ¼ jEj. Note that
a can be bounded by Oð ffiffiffiffiffi

m
p Þ [19], and it is typically much

Fig. 4. Running example of calculating Pr½ðv8; v9Þ; ��.

QIU ETAL.: EFFICIENT STRUCTURALCLUSTERING ON PROBABILISTIC GRAPHS 1959

smaller than the worst-case bound in real-world graphs [20].
Clearly, after computing the reliable structural similarities
for all edges, the entire clustering procedure can be done in
linear time (with respect to the graph size). As a result, the
total time cost of our algorithm for structural clustering on
probabilistic graphs isOðd2max 	 a	mÞ.
Algorithm 2. DP for Computing Prðe; �Þ
Input: G ¼ ðV;E; P Þ, an edge e ¼ ðu; vÞ 2 E, and

similarity threshold �
Output: the probability Prðe; �Þ when the structural

similarity of e is no less than �
1 InitializeXðh;m0; n0Þ 0; for all h 2 ½0; kunion�,
m0 2 ½0; kjoin� and n 2 ½0; k0union�;

2 Prðe; �Þ 0;
3 Xð0; 2; 2Þ 1;
4 for h 1 to kunion � 2 do
5 for n0 2 to kunion do
6 form0 2 tominfn0; kjoing do
7 Xðh;m; nÞ pðwh;uÞpðwh;vÞXðh� 1;m0 � 1; n0 � 1Þ þ

ðð1� pðwh;uÞÞpðwh;vÞ þ pðwh;uÞð1� pðwh;vÞÞÞXðh� 1;m0;
n0 � 1Þ þ ðð1� pðwh;uÞÞð1� pðwh;vÞÞÞXðh� 1;m0; n0Þ

8 for n0 2 to kunion do
9 form0 dn0�e tominfn0; kjoing do
10 Prðe; �Þ Prðe; �Þ þXðkunion � 2;m0; n0Þ
11 return Pe
 Prðe; �Þ

For the space complexity, Algorithm 2 only needs tomain-
tain two 2-dimensional (2D) arrays to compute allXðh;m0; n0Þ
for each edge ðu; vÞ, which consumes OðkunionkjoinÞ. This is
because the states in the hth iteration only rely on the states in
the ðh� 1Þth iteration (see Eq. (5)), thus two 2D arrays are suf-
ficient to implement the DP algorithm. Since our structural
clustering algorithm can release the space after computing
Prðe; �Þ for each edge e, the space cost of our algorithm can be
bounded by Oðd2max þmÞ. In practice, the space usage of our
algorithm is much less than the worst-case bound, because
kunionkjoin is typically much smaller than d2max for most edges.
In our experiments, we will show that the space overhead of
our algorithm is slightly larger than the graph size.

4 OPTIMIZATION

Recall that in our algorithm, the most time-consuming step
is to compute the probability of structural similarity for
each edge, i.e., Pr½e; �� for each e 2 E. In this section, we
develop several effective pruning techniques to speed up
the computing of Pr½e; ��. Below, we first introduce the basic
pruning rules, followed by the early termination pruning
rule, as well as several advanced pruning rules.

4.1 Basic Pruning Rules

Property 1 (Pruning Improper Edges). For any edge e ¼
ðu; vÞ 2 E, if Pe < h, we have Pr½e; �� < h.

When the probability Pe of an edge e is less than h, the
probability that e exists in all possible worlds is also less
than h. Hence, it is easy to derive that the probability Pr½e; ��
of the structural similarity on e must be less than h. As a
consequence, we can prune all the edges with probabilities
less than h in G using Property 1.

Property 2 (Avoiding Duplicate Computation). For
any edge e ¼ ðu; vÞ 2 E, Pr½e ¼ ðu; vÞ; �� ¼ Pr½e ¼ ðv; uÞ; ��
always holds.

Consider that Pr½e ¼ ðu; vÞ; �� is computed when we visit
the vertex u. Based on the Property 2, it is equivalent to
have Pr½ðv; uÞ; �� for the unvisited vertex v. By doing this, we
can avoid the duplicate computation on the edge e ¼ ðv; uÞ
when we visit v.

Recall that at the hth iteration, Algorithm 2 needs to enu-
merate each possible value of n0 (the second “for” loop), and
then enumerates each possible value of m0 (the third “for”
loop). Note that for any state Xðh; n0;m0Þ in the DP proce-
dure, n0must be no lessm0, becausen0 denotes the denomina-
tor of the Jaccard similarity, while m0 represents the
numerator of the Jaccard similarity. As a result, we are capa-
ble of using the property ofm0 � n0 for pruning. Specifically,
in the third loop, we only need to enumerate m0 from 2 to
minfn0; kjoingwhich is implemented in Algorithm 2 (Line 6).

4.2 Early Termination
Intuitively, we may reduce the computational cost of the
DP algorithm by checking the condition that m0

n0 � �, i.e.,
m0 � n0 	 �. However, it is nontrivial to use this result for
pruning. Specifically, the challenge is that even if m0

n0 < � in
the third loop of Algorithm 2, we are still not able to termi-
nate the computation, otherwise we may obtain incorrect
results. This is because the value of m0

n0 may increase to m0þ1
n0þ1 if

the algorithm continues to enumerate the next common
neighbor, where m0þ1

n0þ1 could be no less than �; and therefore
we cannot terminate the algorithm when m0

n0 < �. Below, we
present an approach to tackle this challenge.

Our approach is based on the following property.

Property 3. Suppose that all the common neighbors in
NðuÞ \NðvÞ have been processed by the DP algorithm at the
hth iteration. We can terminate the computation to enumerate
the values of n0 orm0 if m

0
n0 < � at the hth iteration.

Proof. Since all the common neighbors in NðuÞ \NðvÞ have
been processed at the hth iteration, the value of m0

n0 cannot
increase after enumerating any neighbor in NðuÞ [NðvÞ
(because enumerating any neighbor in NðuÞ [NðvÞ can
only increase the denominator of the Jaccard similarity).
Therefore, if we have m0

n0 < � at the hth iteration, the algo-
rithm can early terminate the enumeration of n0 orm0. tu
We implement this early terminating pruning in Algo-

rithm 3 (Line 5-8). Note that in Algorithm 3, we assume that
all the common neighbors are processed first, and then the
algorithm process the other neighbors inNðuÞ [NðvÞ. Thus,
in Line 8, we can use the condition h > kjoin � 2 to deter-
mine whether all common neighbors have been explored.
Unlike Algorithm 2, Algorithm 3 first enumerates m0, and
then enumerates n0 to further reduce the computational
cost. This is because n0 is typically much larger than m0, and
therefore the algorithm can significantly reduce the compu-
tational cost for enumerating n0 using the early termination
pruning rule.

4.3 Pruning by Lower and Upper Bounds
Here we develop several lower and upper bounds for
Pr½e; ��, which can be used to further reduce the computa-
tional cost of Algorithm 3. Specifically, if we find that the
lower bound of Pr½e ¼ ðu; vÞ; �� is larger than h, we can early
complete the algorithm, because in this case u must be reli-
able structural similar to v. Likewise, if we derive that the
upper bound of Pr½e ¼ ðu; vÞ; �� is smaller than h, we are

1960 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 10, OCTOBER 2019

also able to terminate the algorithm, as u is definitely not
reliable structural similar to v in this case. We details our
lower and upper bounding techniques as follows.

Algorithm 3. Improved DP for Computing Prðe; �Þ
1 if pe < h then
2 return; /* Property 1 pruning rule */
3 Lines 1-3 in Algorithm 2;

4 for h 1 to kunion � 2 do
5 form0 2 tominfhþ 2; kjoing do
6 t m0

� ;
7 for n0 m0 tominfhþ 2; kuniong do
8 if h > kjoin � 2 and n0 � t then
9 break; /* early termination */
10 Xðh;m0; n0Þ pðwh;uÞpðwh;vÞXðh� 1;m0 � 1; n0 � 1Þ þ

ðð1� pðwh;uÞÞpðwh;vÞ þ pðwh;uÞð1� pðwh;vÞÞÞXðh� 1;m0;
n0 � 1Þ þ ðð1� pðwh;uÞÞð1� pðwh;vÞÞÞXðh� 1;m0; n0Þ

11 Lines 8-11 in Algorithm 2;

Fixed Denominator Based Lower Bound. Recall that in any
possible world, the denominator of the Jaccard similarity
between u and v (sðu; vÞ) is no larger than kunion, i.e.,
n0 � kunion. In any possible world, if we fix the denominator
as kunion in computing sðu; vÞ, the result must be no larger
than the exact sðu; vÞ. Therefore, we can derive a lower
bound for Pr½e; �� by computing sðu; vÞwith a fixed denomi-
nator kunion in any possible world.

We can devise a lightweight DP algorithm to compute
such a lower bound. Similar to Algorithm 2, we denote
Xðh;m0Þ as a state representing the probability of sðu; vÞ ¼
m0=kunion after processing the vertex wh at the hth iteration,
where wh 2 NðuÞ [NðvÞ. Then, the following recursive
equation can be applied to compute allXðh;m0Þ.

Xðh;m0Þ ¼ pðwh; uÞpðwh; vÞXðh� 1;m0 � 1Þ
þ ðð1� pðwh; uÞÞpðwh; vÞ þ pðwh; uÞð1� pðwh; vÞÞ
þ ð1� pðwh; uÞÞð1� pðwh; vÞÞÞXðh� 1;m0Þ:

(6)

Initially, we haveXð0; 2Þ ¼ pe. The DP algorithm can be eas-
ily devised based on Eq. (6), we omit the details due to the
space limit. Obviously, the time complexity of this light-
weight DP algorithm is Oðkunion 	 kjoinÞ, which is much
lower than that of the Algorithm 2. The space complexity of
this DP algorithm is OðkjoinÞ using a similar space-saving
trick as presented in Algorithm 2. After computing all
Xðh;m0Þ for h 2 ½0; kunion� and m0 2 ½0; kjoin�, we are able to
obtain a lower bound

P
8h;m0;m0=kunion�� Xðh;m0Þ for Pr½e; ��.

Fixed Numerator Based Upper Bound. Similarly, an upper
bound for Pr½e; �� can be obtained by fixing the numerator
m0 as kjoin for the Jaccard similarity sðu; vÞ in any possible
world. This is because, by fixingm0 ¼ kjoin, the resulting Jac-
card similarity between u and v in any possible world is
kjoin=n

0 which is no smaller than the exact Jaccard similarity.
Likewise, we can develop a similar lightweight DP algo-

rithm to compute the upper bound. Let Xðh; n0Þ be the state,
representing the probability of sðu; vÞ ¼ kjoin=n

0 after process-
ing the vertexwh at the hth iteration. Then, the recursive equa-
tion of this lightweight DP algorithm is shown as follows.

Xðh;n0Þ ¼ ðpðwh; uÞpðwh; vÞ þ ð1� pðwh; uÞÞpðwh; vÞ
þ pðwh; uÞð1� pðwh; vÞÞÞXðh� 1; n0 � 1Þ
þ ðð1� pðwh; uÞÞð1� pðwh; vÞÞÞXðh� 1; n0Þ:

(7)

Clearly, the time and space complexities of this lightweight
DP algorithm areOðkunionÞ2 andOðkunionÞ respectively, which
are much lower than those of Algorithm 2. Similarly, we
can obtain an upper bound

P
8h;n0;kjoin=n0�� Xðh;n0Þ for Pr½e; ��,

after computing all Xðh;n0Þ for h 2 ½0; kunion� and n0

2 ½0; kunion�.
A Tight Upper Bound. Here we derive a novel upper

bound which is tighter than the fixed numerator based
upper bound. For any edge e ¼ ðu; vÞ, we first remove all
the neighbor vertices in ðNðuÞ [NðvÞÞ n ðNðuÞ \NðvÞÞ.
Then, we compute the probability of structural similarity on
the revised probabilistic graph only containing the common
neighbors between u and v. The computed probability,
denoted by ~Pr½e; ��, is an upper bound of Pr½e; ��. The reason
is that adding back any vertex in ðNðuÞ [NðvÞÞ n ðNðuÞ \
NðvÞÞ into the revised probabilistic graph may increase the
denominator of the Jaccard similarity sðeÞ, and therefore
decreases the probability of “sðeÞ � �”. Hence, the exact
probability Pr½e; ��must be no larger than ~Pr½e; ��.

Interestingly, we can slightly modify Algorithm 3 to com-
pute ~Pr½e; ��. Similar to Algorithm 3, the modified algorithm
processes the common neighbors between u and v first, and
then processes the other neighbors. Once the algorithm has
processed all the common neighbors, we can easily derive
that ~Pr½e; �� ¼P

h�jNðuÞ\NðvÞj;8m0;n0;m0=n0�� Xðh;m0; n0Þ. This is

because, when h � jNðuÞ \NðvÞj, the DP algorithm only
examines the common neighbors which is equivalent to per-
forming the DP procedure on the revised probabilistic
graph that only contains the common neighbors between u
and v. The modified algorithm only needs to perform an
additional computing of

P
h�jNðuÞ\NðvÞj;8m0;n0;m0=n0�� Xðh;

m0; n0Þ, when it has processed all common neighbors. Note
that if ~Pr½e; �� < h, we can early terminate the DP algo-
rithm, because Pr½e; �� is definitely smaller than h. In addi-
tion, ~Pr½e; �� is tighter than the fixed numerator based upper
bound. This is because the numerator of the Jaccard similar-
ity in computing ~Pr½e; �� is definitely no larger than kjoin,
thus the probability of the structural similarity with fixed
numerator kjoin must no smaller than ~Pr½e; ��.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate the efficiency and effectiveness of the proposed algo-
rithms. For our algorithms, we implement three variants:
USCAN-B, USCAN-E, USCAN-A. USCAN-B is essentially
the USCAN algorithm with the basic pruning techniques,
USCAN-E is the USCAN-B algorithm with the early termi-
nation pruning, and USCAN-A is our USCAN algorithm
with all pruning techniques proposed in Section 4. To evalu-
ate the effectiveness of our algorithms, we implement two
state-of-the-art uncertain graph clustering algorithms:
PCluster and CKmeans. PCluster is the probabilistic graph
clustering algorithm proposed by Kollios et al. [15], while
CKmeans denotes the reliable graph clustering algorithm
presented by Liu et al. [16]. In addition, we implement a
sampling based SCAN algorithm called MSampling as a
baseline. In MSampling, we first sample N possible worlds,
and then calculate the expected structural similarity of
the edges. With these similarities, we invoke the SCAN
algorithm for clustering. All algorithms are implemented in
C++ and the Standard Template Library (STL) is used. All

QIU ETAL.: EFFICIENT STRUCTURALCLUSTERING ON PROBABILISTIC GRAPHS 1961

the experiments are conducted on an Ubuntu 16.04.1 Linux
System with Intel(R) Xeon(R) CPU E5-2620 v3 (2.40 GHz)
and 32GB main memory.

Datasets.Weuse five various real-life datasets in the experi-
ments. The detailed information of these datasets are
described as follows. CORE is a protein-protein interaction
network provided by Krogan et al. [21]. The network contains
2,708 vertices and 7,123 edges, in which a vertex denotes a
protein and an edge represents an interaction between two
proteins. In this network, each edge is associated with a prob-
ability, denoting the confidence of the interaction between
two proteins. There are around 20 percent edges that have a
probability no less than 0.98, and no edge with probability
less than 0.27. The edge probabilities are uniformly distrib-
uted in the range ½0:27; 0:98�. The dataset shows power-law
degree distribution, small diameter, and high cluster coeffi-
cient. DBLP is a co-authorship network. We download the
original XML data from (http://dblp.uni-trier.de/xml) to
extract the co-authorship network, where two authors are
connected with a link if they co-author at least one paper. We
collect two different DBLP datasets to test our algorithms:
DBLP01 and DBLPAll. DBLP01 consists of a co-authorship
network before 2001, whereas DBLPAll comprises the entire
co-authorship network up to date.Wemainly useDBLP01 for
general testings, because the baseline algorithm CKmeans
cannot handle large graphs (e.g., DBLPAll). For DBLPAll, we
will use it to evaluate the scalability of our algorithms. For
these two DBLP datasets, we can obtain a weight for each
edge which is the number of papers co-authored by two
researchers. To generate a probabilistic graph for DBLP01
and DBLPAll, we adopt a standard method in the uncertain
graph mining literature [11], [12]. In particular, for each edge
ðu; vÞ, we make use of an exponential cumulative distribution
with mean 2 to the weight of ðu; vÞ to generate a probability.
Amazon and Youtube are two unweighted social networks
downloaded from the Stanford Network Analysis Platform
(http://snap.stanford.edu/). For these two unweighted net-
works, we generate a probability for each edge following a
uniform distribution. The detailed statistic information of all
our datasets are reported in Table 1.

Parameter Settings. In our algorithms, we have three dif-
ferent parameters: h, �, and m. For both h and �, we vary
them from 0.2 to 0.8 with a default value of 0.5. We vary the
parameter m from 2 to 20 with a default value of 5. Unless
otherwise specified, the value of the other parameter is set
to its default value when varying a parameter. For the
MSampling algorithm, we set the number of samples N to
150, as it performs very good when N ¼ 150.

5.1 Effectiveness Testing
In this experiment, we compare the clustering qualities of our
USCAN-A algorithm with those of the baseline algorithms.

Following [15], we make use of the CORE dataset for testing,
because we can obtain the ground truth clustering results on
the CORE dataset on the basis of the MIPS protein database
[15]. Based on the ground truth, we are capable of computing
the number of true positives (TP), the number of false posi-
tives (FP), as well as the precision (PR = TP/(TP + FP))
obtained by a variety of algorithms. More specifically, TP is
defined as the number of correctly matched interactions in
predicted complexes with that in MIPS, and FP is defined as
the total number of interactions in predicted complexesminus
TP. We adopt the samemethod to compute TP, FP, and PR as
used by Kollios et al. [15]. For our algorithm, we set the
parameters h ¼ 0:2, � ¼ 0:5, and m ¼ 2, since our algorithm is
sufficient to achieve a good performance with this parameter
setting. The results are reported in Table 2.

In Table 2, we also report the results obtained by the
method proposed by Krogan et al. [21], denoted by
“Reference”, albeit it was shown to be much less effective
than the state-of-the-art baseline [15]. As can be seen, our
algorithm significantly outperforms all the baselines in
terms of the clustering precision, followed by MSampling,
PCluster, Reference, and CKmeans. Note that MSampling
performs very good and it is even better than the state-of-
the-art PCluster algorithm. However, the number of clusters
identified byMSampling is much less than that of USCAN-A
or PCluster. Compared to PCluster, the FP value of our
algorithm USCAN-A is substantially smaller than that of
PCluster, and its TP value is slightly larger than that of
PCluster. The overall precision of USCAN-A is significantly
higher than PCluster and MSampling. Specifically, our algo-
rithm achieves precision 0.348, whereas the precision
obtained by PCluster and MSampling is 0.266 and 0.292
respectively. Our algorithm improves the precision over
PCluster and MSampling by 31 and 19 percent respectively.
It is worth mentioning that the Reference algorithm is inef-
fective, as it yields a very large FP value. Also, we can see
that the CKmeans performs extremely bad, because this
method only works well for the datasets containing a small
number of clusters [16]. Since CORE has many ground truth
clusters, the CKmeans algorithm does not work in this data-
set. These results indicate that USCAN-A is more effective
than all baseline algorithms for uncertain graph clustering.

Clustering Precision with Varying Parameters. Here we
study how the parameters affect the clustering qualities of
our algorithm. Fig. 5 reports the precision of our algorithm
with varying parameters on the CORE datasets. As can be
seen, our algorithm significantly outperforms Reference,
PCluster and CKmeans under most parameter settings, and
it slightly outperform the MSampling algorithm. For exam-
ple, in Fig. 5a, the precision of our algorithm is at least twice
higher than that of PCluster with varying h. Also, we can
see that the precision of our algorithm is relatively robust
with respect to h. This is because the probabilities of the

TABLE 1
Datasets with Detailed Statistics (dmax: Max Degree, �d: Average

Degree, and �p: Average Probability)

Graph #vertices #edges dmax
�d �p

CORE 2,708 7,123 141 5.26 0.6794
DBLP01 435,646 1,005,796 241 4.62 0.4736
DBLPAll 1,843,615 8,350,259 2,213 9.06 0.4926
Amazon 334,863 925,872 549 5.53 0.5001
Youtube 1,134,890 2,987,624 28,754 5.27 0.5001

TABLE 2
Clustering Precision of Various Algorithms

Algorithm #clusters TP FP PR

Reference 547 1,765 11,692 0.131
USCAN-A 456 1,086 2,037 0.348
MSampling 384 1,331 3,223 0.292
PCluster 475 1,027 3,021 0.266
CKmeans 150 550 899,145 0.00061

1962 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 10, OCTOBER 2019

http://dblp.uni-trier.de/xml
http://snap.stanford.edu/

edges in the CORE datasets are very large, and thereby the
resulting clusters have relatively high probabilities. As a
consequence, the clusters cannot be significantly affected by
the parameter h. The precision of our algorithm increases
with a growing � or m. This is because with a large � or m,
we may prune many unreliable edges with small probabili-
ties, and thus the clusters will be highly reliable. When
h ¼ 0:7, � ¼ 0:5, and m ¼ 12, the precision of our algorithm
is 0.70, which is much higher than that of the PCluster algo-
rithm. These results confirm the high effectiveness of our
algorithm for probabilistic graph clustering.

Average Expected Density of Different Algorithms. Here we
evaluate the effectiveness of various algorithms on several
large datasets. We propose a new and intuitive metric,
called average expected density (AED), to measure the clus-
tering quality for different algorithms, because all these
large datasets have no ground-truth clusters. Specifically,
AED is defined as

AED ¼ 1

n0
	
Xn0
i¼1

X
ej2Ei

pðejÞ 	 2=ðjVij 	 ðjVij � 1ÞÞ; (8)

where n0 denotes the number of clusters,Ei is the set of edges
in the ith cluster, Vi denotes the set of nodes in the ith cluster.
Intuitively, a reliable cluster should have a large AED value.
A higher AED value indicates a better clustering algorithm.
Similar metric is also used in [22], [23] to measure the quality
of clusters in probabilistic graphs. Fig. 6 shows our results
with varying �. Similar results can also be obtained by vary-
ing the other parameters. From Fig. 6, we can clearly see that
USCAN significantly outperforms PCluster in most parame-
ter settings. For example, on the datasets Youtube and

DBLPAll, the AED values of PCluster are very small (0.25 on
Youtube and 0.5 on DBLPAll), while USCAN can achieve
much higher AED values on the same datasets (0.72 on
Youtube and 0.87 on DBLPAllwhen � ¼ 0:5). It is worth men-
tioning that there is no � parameter in the PCluster algorithm,
thus its performance keeps unchanged with varying �. We
can also observe that USCAN is capable of finding reliable
and dense clusters when � increases to a reasonable value. If �
is too large,USCANmay return nothing, because all the verti-
ces will be pruned given a large �. In practice, � ¼ 0:5 is suffi-
cient to guarantee a good clustering results for our algorithm.
Similar to the previous results, MSampling is slightly worse
than USCAN, but it significantly outperforms PCluster. The
results indicate that theSCAN based framework is very effec-
tive to find reliable clusters on probabilistic graphs.

Expected Modularity of Various Algorithms.Here we use the
modularity-based metric to measure the effectiveness of our
algorithm. The concept of modularity was proposed by
Newman [24], [25] which can be used to measure the cluster-
ing quality. Based on the well-known modularity measure,
we define ameasure called expectedmodularity as follows:

�Q ¼ 1

N 	
X
G2G

QG; (9)

where G is a possible world of the probabilistic graph G, N
denotes the number of all possible worlds of G, QG denotes
the modularity of the possible world G [25]. Note that the
modularity of a possible world G can be easily calculated
by definition [25]. Since N is exponentially large, we use a
sampling based algorithm to estimate the expected modu-
larity as follows. Specifically, we first sample N possible
worlds and then compute the standard modularity on each
possible world. Subsequently, we take the average value of
modularity over all N possible worlds. Fig. 7 shows the
expected modularity of USCAN, PCluster and MSampling
on CORE and Amazon datasets. Similar results can also be
observed on the other datasets. As can be seen, USCAN sig-
nificantly outperforms PCluster and it is also slightly better
than MSampling. These results further confirm the effective-
ness of our algorithm.

Sensitive Analysis. In this experiment, we study whether
our USCAN algorithm is sensitive to the edge insertion or
not. To this end, we first randomly insert 100 edges into the
probabilistic graph with a fixed probability p selected from
a range ½0:1; 0:9�. Then, we run USCAN on this slightly mod-
ified probabilistic graph and evaluate the clustering quality
of USCAN based on the average expected density and
expected modularity. Fig. 8 shows the results on CORE
datasets. Similar results can also be observed on the other
datasets. Note that in Fig. 8, USCAN + denotes the result of

Fig. 5. Precision of our algorithm with varying parameters (CORE).

Fig. 6. Average expected density of various algorithms with varying �.

QIU ETAL.: EFFICIENT STRUCTURALCLUSTERING ON PROBABILISTIC GRAPHS 1963

USCAN on the modified probabilistic graph. As can be seen,
USCAN is very robust with respect to the probability p.
Even when p ¼ 0:9, USCAN can still obtain similar results
on both the original and modified probabilistic graph. These
results indicate that our algorithm is robust under a small
perturbation of the probabilistic graph.

Statistics of the Reliable Structural Clustering. Here we
report the statistics of the reliable structural clustering
results. Fig. 9 show the number clusters, hubs, and outliers
on CORE and DBLPAll with varying parameters separately.
Similar results can also be observed on the other datasets. In
general, both the number of clusters and the number of hubs
decrease with increasing h; �, and m. The number of outliers
increases when h; �, and m increase. This is because by the
definitions of clusters and hubs in Section 2, our algorithm is
able to prune many vertices for large h, � and m values. As a
result, the number of clusters and hubs decreases and the
number of outliers increases, with increasing h, � andm.

5.2 Runtime Testing
In this section, we first evaluate the runtime of different algo-
rithms. Then, we perform comprehensive experiments to
test the runtime of our algorithmswith varying parameters.

Runtime of Various Algorithms. We compare the running
time of our best algorithm (USCAN-A) with those of the
baselines. The parameters of USCAN-A are set as their
default values (h ¼ 0:5, � ¼ 0:5, and m ¼ 5). Fig. 10 reports
the time consumption of various algorithms. As can be
seen, USCAN-A, MSampling and PCluster are very efficient
on all datasets, whereas the CKmeans algorithm is very
costly for handling large graphs. On the CORE, DBLP01

and Amazon datasets, our algorithm is significantly faster
than MSampling, PCluster and CKmeans. In the DBLPAll
and Youtube datasets, PCluster is faster than USCAN-A. It
should be noted that although PCluster is more efficient
than our algorithm on large datasets, its clustering quality is
significantly worse than our algorithm, as demonstrated in
the previous experiments. Our algorithm not only produces
high-quality clustering results, but it also very efficient to
handle large real-world probabilistic graphs. Note that
MSampling is very costly, because it needs to evaluate the
structural similarities for all edges in each possible world.
In addition, it is worth mentioning that CKmeans cannot
complete in one day on the DBLPAll datasets due to the
high time and space complexities of the algorithm.

Runtime Results: Varying h. Fig. 11 reports the runtime of
USCAN-B, USCAN-E, and USCAN-A by varying h on four
different datasets. Similar results can also be observed on
DBLPAll. From Fig. 11, we can clearly see thatUSCAN-A out-
performs the other two algorithms, since it is integrated all
the pruning rules. On large datasets, USCAN-A can even be
one order of magnitude faster than USCAN-E. For instance,
on the Youtube dataset, USCAN-A is more than 20 times
faster than USCAN-E. Also, we can see that USCAN-E is sig-
nificantly faster than USCAN-B, due to the powerful early-
termination pruning (see Section 4). The USCAN-B algo-
rithm is very costly for handling large datasets. For example,
USCAN-B cannot be completed in one day in the Youtube
dataset. Generally, the time costs of our algorithms decrease
with an increasing h. The reason is that the larger h is, the
more edges will be pruned by our algorithms. These results
confirm our theoretical analysis in the previous sections.

Fig. 7. Expected modularity of various algorithms with varying �. Fig. 8. Sensitive analysis of USCAN on CORE.

Fig. 9. The number of clusters, hubs, and outliers with varying parameters.

1964 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 10, OCTOBER 2019

Runtime Results: Varying �. We evaluate the efficiency of
our algorithms with varying � on four diverse datasets. The
results of varying � are shown in Fig. 12. Again, similar
results can be obtained on DBLPAll. As can be seen,
USCAN-A is clearly the winner among all our algorithms,
followed by USCAN-E and USCAN-B. The time costs of
both USCAN-A and USCAN-E decrease with increasing �,
while the time overhead of USCAN-B is relatively robust
w.r.t. �. This is because the early-termination pruning of
both USCAN-A and USCAN-E performs well for a large �.
The USCAN-B algorithm, however, does not use this prun-
ing rule, thus it is robust w.r.t. �. Also, we can see that
USCAN-A is at least one order of magnitude faster than

USCAN-E on large datasets. These results further demon-
strate the high efficiency of USCAN-A.

Runtime Results: Varyingm.Herewe show how the param-
eter m affects the efficiency of our algorithms. Fig. 13 shows
our results on four different datasets, and similar results can
also be observed on DBLPAll. Similarly, USCAN-A is better
than USCAN-E and USCAN-B. In general, the time spent by
our algorithms decreases as m increases. This is because, our
algorithms can prune many non-core vertices with a large m,
thus significantly reducing the computational costs of our
algorithms. These results further validate our theoretical
results presented in the previous sections.

5.3 Memory Consumption and Scalability Testing
In this section, we evaluate the memory usage and the scal-
ability of our algorithms.

Memory Consumption.We report the memory overhead of
USCAN-A in Fig. 14. As shown in Fig. 14, the space cost of
our algorithm is around three times of the size of the graph
on all five datasets. For example, on DBLPAll, USCAN-A
uses 160 MB memory, while the graph size is 54 MB. This is
because the space complexity of our algorithm is nearly lin-
ear w.r.t. the graph size. These results suggest that
USCAN-A is highly space-efficient, confirming the theoreti-
cal analysis in Section 3.

Scalability Testing. Here we evaluate the scalability of our
algorithms using two large datasets: Youtube and DBLPAll.
For each dataset, we generate four subgraphs by randomly
sample 20-80 percent of the vertices and 20-80 percent of the
edges, respectively. In this experiment, we set the parameters
of our algorithm to be their default values. Similar results can

Fig. 10. Runtime of different algorithms.

Fig. 11. Runtime of our algorithms with varying h.

Fig. 12. Runtime of our algorithms with varying �.

Fig. 13. Runtime of our algorithms with varying m.

Fig. 14. Memory overhead of USCAN-A.

QIU ETAL.: EFFICIENT STRUCTURALCLUSTERING ON PROBABILISTIC GRAPHS 1965

also be observedwith other parameter settings. The results are
shown in Fig. 15. As can be observed, the running time of both
USCAN-A and USCAN-E increase smoothly w.r.t. jV j or jEj,
indicating that our algorithms scalewell in real-world graphs.
The USCAN-B algorithm, however, cannot handle large data-
sets. These results indicate that the pruning techniques devel-
oped in USCAN-A and USCAN-E are very powerful,
resulting in the high scalability of our algorithms.

6 RELATED WORK

Besides the probabilistic graph clustering, our work is also
related to cohesive subgraph mining in uncertain graphs
and the deterministic graph clustering. Below, we review
the existing studies on these topics.

Cohesive Subgraphs in Probabilistic Graphs. In the literature,
there are many cohesive subgraph models are proposed for
deterministic graphs, such as maximal clique [26], [27], [28],
[29], quasi-clique [30], k-core [31], [32], and k-truss [33], [34].
Recently, similar cohesive subgraph concepts are extended
to probabilistic graphs. Bonchi et al. extended the concept of
k-core to probabilistic semantics [35]. Mehmood et al.
focused on the influence cascade problem under a certain
contagion model, in which the influence is taken as a reach-
ability metric to measure whether or not a node can be acti-
vated or influenced [36]. Unlike their work, we concentrates
mainly on the reliable structural clustering problem. Zou
et al. [37] studied a top-k maximal clique search problem in
uncertain graphs. More recently, Mukherjee et al. [18] pro-
posed a new uncertain maximal clique model as well as an
efficient uncertain maximal clique enumeration algorithm.
Gao et al. [38] proposed a solution on finding RkNN over
uncertain graphs. Huang et al. [39] proposed the definitions
of local and global ðk; gÞ-truss which enable the truss
decomposition on uncertain graphs. They also proposed a
dynamic programming algorithm to compute the local
k-truss. However, their DP algorithm cannot be directly
used for solving our problem, because the reliable structural
similarity computation in our problem is much more com-
plicated than computing the local k-truss.

Deterministic Graph Clustering. In the literature, there are a
huge number of clusteringmethods on deterministic graphs,
such as modularity-based method [40], [41], [42], graph

partitioning [43], [44], [45], and density-based method [46].
An excellent survey on deterministic graph clustering has
beenmade byAggarwal et al. [47]. Also, some graph summa-
rization techniques can also be used for clustering. A good
review on this topic can be found in [48], [49]. Xu et al. [1]
proposed a clustering method called Structural Clustering
Algorithm for Networks (SCAN). Different from the previ-
ous works, SCAN can find out the clusters as well as the
hubs and the outliers. Hubs and outliers are vertices which
do not belong to any clusters. A hub is a vertex that bridges
two or more clusters, and an outlier is a vertex which con-
nects to one or zero cluster. To improve the efficiency of
SCAN, [3] and [4] proposed several pruning rules to speed
up the clustering process significantly. All these SCAN algo-
rithms cannot directly used for probabilistic graph data. In
this paper, we extend the SCAN framework to probabilistic
graph on the basis of a newly-proposed concept called reli-
able structural similarity.

7 CONCLUSION

In this paper, we study the structural clustering problem
on probabilistic graphs. Unlike the existing structural
clustering problems on deterministic graphs, our problem
relies on a new concept called reliable structural similarity,
which is used to measure the probability of similarity
between two vertices in the probabilistic graph. We
develop a new dynamic programming algorithm with sev-
eral carefully-designed pruning techniques to efficiently
compute the reliable structural similarities. With the reli-
able structural similarities, we extend the state-of-the-art
structural clustering algorithm to efficiently solve our
problem. Extensive experiments on five real-life datasets
show the effectiveness, efficiency, and scalability of the
proposed solutions.

ACKNOWLEDGMENTS

This work was partially supported by (i) the National Key
R&D Program of China 2018YFB1003201; (ii) NSFC Grants
61772346, 61732003, 61772091, and 61802035; (iii) the Beijing
Institute of Technology Research Fund Program for Young
Scholars; (iv) the Research Grants Council of the Hong
Kong SAR, China No. 14221716; (v) ARC Discovery Project
Grant DP160102114; and (vi) Guangdong Pre-national proj-
ect 2014GKXM054.

REFERENCES

[1] X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger, “SCAN: A struc-
tural clustering algorithm for networks,” in Proc. 13th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, 2007, pp. 824–833.

[2] S. Lim, S. Ryu, S. Kwon, K. Jung, and J. Lee, “LinkSCAN*: Overlap-
ping community detection using the link-space transformation,” in
Proc. IEEE 30th Int. Conf. Data Eng., 2014, pp. 292–303.

[3] H. Shiokawa, Y. Fujiwara, and M. Onizuka, “SCAN++: Efficient
algorithm for finding clusters, hubs and outliers on large-scale
graphs,” Proc. VLDB Endowment, vol. 8, no. 11, pp. 1178–1189,
2015.

[4] L. Chang, W. Li, X. Lin, L. Qin, and W. Zhang, “pSCAN: Fast and
exact structural graph clustering,” in Proc. IEEE 32nd Int. Conf.
Data Eng., May 2016, pp. 253–264.

[5] C. C. Aggarwal, Managing and Mining Uncertain Data, vol. 35.
Norwell, MA, USA: Kluwer, 2009.

[6] J. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Chant, “Gaining
confidence in high-throughput protein interaction networks,”
Nature Biotechnology, vol. 22, no. 1, pp. 78–85, 2004.

Fig. 15. Scalability testing.

1966 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 10, OCTOBER 2019

[7] H. Kawahigashi, Y. Terashima, N. Miyauchi, and T. Nakakawaji,
“Modeling ad hoc sensor networks using random graph theory,”
in Proc. 2nd IEEE Consum. Commun. Netw. Conf., 2005, pp. 104–109.

[8] U. Kuter and J. Golbeck, “SUNNY: A new algorithm for trust
inference in social networks using probabilistic confidence mod-
els,” in Proc. 22nd Nat. Conf. Artif. Intell., 2007, pp. 1377–1382.

[9] D. Kempe, J. M. Kleinberg, and �E. Tardos, “Maximizing the spread
of influence through a social network,” in Proc. 9th ACM SIGKDD
Int. Conf. Knowl. Discovery DataMining, 2003, pp. 137–146.

[10] P. Hintsanen, “The most reliable subgraph problem,” in Proc. Eur.
Conf. Principles Data Mining Knowl. Discovery, 2007, pp. 471–478.

[11] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “k-nearest
neighbors in uncertain graphs,” Proc. VLDB Endowment, vol. 3,
no. 1, pp. 997–1008, 2010.

[12] R. Jin, L. Liu, B. Ding, and H. Wang, “Distance-constraint reach-
ability computation in uncertain graphs,” Proc. VLDB Endowment,
vol. 4, no. 9, pp. 551–562, 2011.

[13] Z. Zou, H. Gao, and J. Li, “Discovering frequent subgraphs over
uncertain graph databases under probabilistic semantics,” in Proc.
16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010,
pp. 633–642.

[14] Z. Zou, J. Li, H. Gao, and S. Zhang, “Finding top-k maximal cli-
ques in an uncertain graph,” in Proc. IEEE 26th Int. Conf. Data
Eng., 2010, pp. 649–652.

[15] G. Kollios, M. Potamias, and E. Terzi, “Clustering large probabilis-
tic graphs,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 2, pp. 325–
336, Feb. 2013.

[16] L. Liu, R. Jin, C. Aggarwal, and Y. Shen, “Reliable clustering on
uncertain graphs,” in Proc. IEEE 12th Int. Conf. Data Mining, 2012,
pp. 459–468.

[17] R. Jin, L. Liu, and C. C. Aggarwal, “Discovering highly reliable
subgraphs in uncertain graphs,” in Proc. 17th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2011, pp. 992–1000.

[18] A. P. Mukherjee, P. Xu, and S. Tirthapura, “Mining maximal cli-
ques from an uncertain graph,” in Proc. IEEE 31st Int. Conf. Data
Eng., 2015, pp. 243–254.

[19] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algo-
rithms,” SIAM J. Comput., vol. 14, no. 1, pp. 210–223, 1985.

[20] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter, “Arboricity, h-
index, and dynamic algorithms,” Theoretical Comput. Sci., vol. 426,
pp. 75–90, 2012.

[21] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko,
J. Li, S. Pu, N. Datta, A. P. Tikuisis, et al., “Global landscape of
protein complexes in the yeast saccharomyces cerevisiae,” Nature,
vol. 440, no. 7084, pp. 637–643, 2006.

[22] S. E. Schaeffer, “Graph clustering,” Comput. Sci. Rev., vol. 1, no. 1,
pp. 27–64, 2007.

[23] B. Zhao, J. Wang, M. Li, F.-X. Wu, and Y. Pan, “Detecting protein
complexes based on uncertain graph model,” IEEE/ACM Trans.
Comput. Biol. Bioinf., vol. 11, no. 3, pp. 486–497, May/Jun. 2014.

[24] M. E. J. Newman, “The structure and function of complex
networks,” SIAM Rev., vol. 45, no. 2, pp. 167–256, 2003.

[25] M. E. J. Newman, “Modularity and community structure in
networks,” Proc. Nat. Acad. Sci. United States America, vol. 103,
no. 23, pp. 8577–8582, 2006.

[26] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an
undirected graph,” Commun. ACM, vol. 16, no. 9, pp. 575–577,
1973.

[27] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maxi-
mal cliques in massive networks by H*-graph,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2010, pp. 447–458.

[28] J. Wang, J. Cheng, and A. W.-C. Fu, “Redundancy-aware maximal
cliques,” in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2013, pp. 122–130.

[29] J. Xiang, C. Guo, and A. Aboulnaga, “Scalable maximum clique
computation using MapReduce,” in Proc. IEEE 29th Int. Conf. Data
Eng., 2013, pp. 74–85.

[30] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli,
“Denser than the densest subgraph: Extracting optimal quasi-cli-
ques with quality guarantees,” in Proc. 19th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2013, pp. 104–112.

[31] V. Batagelj and M. Zaversnik, “An O (m) algorithm for cores
decomposition of networks,” arXiv preprint cs/0310049, 2003.

[32] J. Cheng, Y. Ke, S. Chu, and M. T. €Ozsu, “Efficient core decompo-
sition in massive networks,” in Proc. IEEE 27th Int. Conf. Data
Eng., 2011, pp. 51–62.

[33] J. Cohen, “Trusses: Cohesive subgraphs for social network analy-
sis,” Nat. Secur. Agency Tech. Rep., 2008, Art. no. 16.

[34] J. Wang and J. Cheng, “Truss decomposition in massive
networks,” Proc. VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.

[35] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core
decomposition of uncertain graphs,” in Proc. 20th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 1316–1325.

[36] Y. Mehmood, F. Bonchi, and D. Garc�ıa-Soriano, “Spheres of influ-
ence for more effective viral marketing,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2016, pp. 711–726.

[37] Z. Zou, J. Li, H. Gao, and S. Zhang, “Finding top-k maximal cli-
ques in an uncertain graph,” in Proc. IEEE 26th Int. Conf. Data
Eng., 2010, pp. 649–652.

[38] Y. Gao, X. Miao, G. Chen, B. Zheng, D. Cai, and H. Cui, “On effi-
ciently finding reverse k-nearest neighbors over uncertain
graphs,” The VLDB J., vol. 26, pp. 1–26, 2017.

[39] X. Huang, W. Lu, and L. V. S. Lakshmanan, “Truss decomposition
of probabilistic graphs: Semantics and algorithms,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2016, pp. 77–90.

[40] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Phys. Rev. E, vol. 70, no. 6, 2004,
Art. no. 066111.

[41] R. Guimera and L. A. N. Amaral, “Functional cartography of com-
plex metabolic networks,” Nature, vol. 433, no. 7028, pp. 895–900,
2005.

[42] M. E. Newman and M. Girvan, “Finding and evaluating commu-
nity structure in networks,” Phys. Rev. E, vol. 69, no. 2, 2004,
Art. no. 026113.

[43] C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-max
cut algorithm for graph partitioning and data clustering,” in Proc.
IEEE Int. Conf. Data Mining, 2001, pp. 107–114.

[44] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[45] L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a bil-
lion-node graph,” in Proc. IEEE 30th Int. Conf. Data Eng., 2014,
pp. 568–579.

[46] P. Jiang and M. Singh, “SPICi: A fast clustering algorithm for large
biological networks,” Bioinf., vol. 26, no. 8, pp. 1105–1111, 2010.

[47] C. C. Aggarwal and H. Wang, “A survey of clustering algorithms
for graph data,” in Managing and Mining Graph Data. Berlin,
Germany: Springer, 2010, pp. 275–301.

[48] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization
methods and applications: A survey,” ACM Comput. Surv., vol. 51,
no. 3, 2018, Art. no. 62.

[49] N. Hassanlou, M. Shoaran, and A. Thomo, “Probabilistic graph
summarization,” in Proc. 14th Int. Conf. Web-Age Inf. Manage.,
2013, pp. 545–556.

Yu-Xuan Qiu received the BE and ME degrees in
computer science from Shenzhen University, in
2015 and 2018, respectively. He is currently a
research assistant at the Beijing Institute of Tech-
nology, Beijing, China. His current research inter-
ests include graph data management and mining.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong, in 2013. He is
currently an associate professor at the Beijing
Institute of Technology, Beijing, China. His
research interests include graph data manage-
ment and mining, social network analysis, graph
computation systems, and graph-based machine
learning.

QIU ETAL.: EFFICIENT STRUCTURALCLUSTERING ON PROBABILISTIC GRAPHS 1967

Jianxin Li received the PhD degree in computer
science from the Swinburne University of Technol-
ogy, Australia, in 2009. He is a senior lecturer with
the School of Computer Science and Software
Engineering, University of Western Australia. His
research interests include database query proc-
essing and optimization, social network analysis,
and traffic network data processing.

Shaojie Qiao received the BS and PhD degrees
from Sichuan University, Chengdu, China, in
2004 and 2009, respectively. From 2007 to 2008,
he was a visiting scholar with the School of Com-
puting, National University of Singapore. He is
currently a professor with the School of Cyberse-
curity, Chengdu University of Information Tech-
nology, Chengdu. He has led several research
projects in moving objects databases and trajec-
tory data mining. He authored more than 40 high-
quality papers and co-authored more than

90 papers. His research interests include trajectory prediction and intelli-
gent transportation systems.

Guoren Wang received the BSc, MSc, and PhD
degrees from theDepartment of Computer Science,
Northeastern University, China, in 1988, 1991, and
1996, respectively. Currently, he is a professor with
the Department of Computer Science, Northeast-
ern University, China. His research interests include
XML data management, query processing and opti-
mization, bioinformatics, high dimensional indexing,
parallel database systems, and cloud datamanage-
ment. He has published more than 100 research
papers.

Jeffery Xu Yu received the BE, ME, and PhD
degrees in computer science from the University
of Tsukuba, Japan, in 1985, 1987, and 1990,
respectively. He has held teaching positions at
the Institute of Information Sciences and Elec-
tronics, University of Tsukuba, and with the
Department of Computer Science, Australian
National University, Australia. Currently, he is a
professor with the Department of Systems Engi-
neering and Engineering Management, the Chi-
nese University of Hong Kong, Hong Kong. His

current research interests include graph database, graph mining, key-
word search in relational databases, and social network analysis.

Rui Mao received the PhD degree in computer
science from the University of Texas at Austin, in
2007. He is currently a professor in Shenzhen
University. His research interests include big data
analysis and management, content-based simi-
larity query of multimedia and biological data,
data mining, and machine learning.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1968 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 10, OCTOBER 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

